On the nonlocal nature of dislocation nucleation during nanoindentation
نویسندگان
چکیده
Using static atomistic simulations, we study the full details of the mechanism by which dislocations homogeneously nucleate beneath the surface of a initially defect-free crystal during indentation. The mechanism involves the collective motion of a finite disk of atoms over two adjacent slip planes, the diameter of which depends on the indenter size. The nucleation mechanism highlights the need for nonlocal considerations in the development of a nucleation criterion. We review three nucleation criteria from the literature, each of which is based on purely local measures of the state of stress, and show that none are sufficiently general to predict nucleation in realistic atomic systems. We then propose a criterion based on an eigenmode analysis of the atomic-scale acoustic tensor. We demonstrate the accuracy of the criterion, which also works in the presence of existing topological defects like free surfaces or dislocation cores. The dependence of the size of the nucleated disk on the indenter radius leads to a self-similar nucleation process and virtually no indentation size effect (ISE), suggesting that homogeneous nucleation is only possible for very small indenters. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Simulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method
Dislocation nucleation is central to our understanding of the onset of plasticity during nanoindentation. The shear stress in small volumes beneath the nanoindenter can achieve the theoretical limit of a perfect crystal. The ensuing nonlinear elastic instability can trigger homogenous dislocation nucleation inside the crystal. Here we employ the interatomic potential finite element method to si...
متن کاملQuantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation
A multiscale quasicontinuum density functional theory method is used to study the solid solution effect on dislocation nucleation during nanoindentation. Specifically, an Al thin film with Mg impurities is considered. We find that the solid solution effect depends sensitively on the local configuration of the impurities. Although a random distribution of the impurities increases the hardness of...
متن کاملNondislocation origin of GaAs nanoindentation pop-in event.
The present Letter demonstrates a pop-in event that is caused by a nanoindentation-induced phase transformation in GaAs, and not accompanied by any dislocation nucleation. Our computer simulations reveal the appearance of the new phase, documented by the structural correlation functions and visualization of the atomic positions. This challenges the orthodox view that the initial pop-in event re...
متن کاملDislocation nucleation during nanoindentation of aluminum
Through multiscale simulations, we explore the influence of both smooth and atomically rough indenter tips on the nucleation of dislocations during nanoindentation of single-crystal aluminum. We model the long-range strain with finite element analysis using anisotropic linear elasticity. We then model a region near the indenter atomistically and perform molecular dynamics with an embedded atom ...
متن کاملAnalysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP
Nanoindentation and nanoscratching of an indium phosphide (InP) semiconductor surface was investigated via contact mechanics. Plastic deformation in InP is known to be caused by the nucleation, propagation, and multiplication of dislocations. Using selective electrochemical dissolution, which reveals dislocations at the semiconductor surface, the load needed to create the first dislocations in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008